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Abstract

Purpose – The purpose of this paper is to reduce the destructive effects of existing unavoidable
noises contaminating temperature data in inverse heat conduction problems (IHCP) utilizing the
wavelets.

Design/methodology/approach – For noise reduction, sensor data were treated as input to the
filter bank used for signal decomposition and implementation of discrete wavelet transform. This is
followed by the application of wavelet denoising algorithm that is applied on the wavelet coefficients
of signal components at different resolution levels. Both noisy and de-noised measurement
temperatures are then used as input data to a numerical experiment of IHCP. The inverse problem
deals with an estimation of unknown surface heat flux in a 2D slab and is solved by the variable metric
method.

Findings – Comparison of estimated heat fluxes obtained using denoised data with those using
original sensor data indicates that noise reduction by wavelet has a potential to be a powerful tool for
improvement of IHCP results.

Originality/value – Noise reduction using wavelets, while it can be implemented very easily, may
also significantly relegate (or even eliminate) conventional regularization schemes commonly used in
IHCP.
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Nomenclature
A ¼ amplitude of the noise
eRMS ¼ relative root mean square error,

equation (23)
f ¼ function of sum of squares errors,

equation (18)
g ¼ high pass filter of decomposition stage
~g ¼ high pass filter of synthesis stage
h ¼ low pass filter of decomposition stage
~h ¼ low pass filter of synthesis stage
K ¼ number of sensors

k ¼ conductivity coefficient (W/m 2)
M ¼ total number of time steps
n ¼ total number of unknowns that should

be estimated
ns ¼ number of spatial components of flux
q ¼ heat flux (W/m2)
~q ¼ unknown heat flux vector (design

vector with dimension n £ 1),
equation (15)

S ¼ signal
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T ¼ temperature calculated by the model
(K)

t ¼ time (sec)
th ¼ the threshold
X ¼ pulse sensitivity coefficient (K m2/W)

defined by equation (16)
Y ¼ temperature measured by sensors
(x, y) ¼ Cartesian coordinate system

Greek
a ¼ thermal diffusivity (m2/sec)
1 ¼ tolerance error
w ¼ scaling function
c ¼ wavelet function
v ¼ frequency

Superscripts
T ¼ matrix transpose symbol
ns ¼ total number of spatial components of

heat flux
~n ¼ index of spatial component of flux

(~n ¼ 1; 2; . . . ; ns)
! ¼ vector

Subscripts
K ¼ sensor index number
M ¼ total number of time steps
m, ~m ¼ indices of time step, each between 1, 2,

. . .M

1. Introduction
Inverse heat conduction problems (IHCP), unlike the problems dealing with direct heat
conduction, are mathematically ill-posed; being highly sensitive to random errors
(noises) that inherently exist in measured temperature data. Therefore, reduction of
sensitivity of IHCP methods to these random errors is of critical importance. Methods
of IHCP are classified into two categories: sequential methods and whole domain
methods. Each of these two types of IHCP methods uses its own remedy to reduce
effects of measurement random errors on the estimated results. These remedies are
generally referred to as “regularization” techniques.

Sequential function specification (SFS) method is considered as the main approach in
the sequential category. A review of SFS and other sequential methods can be found in
reference book by Beck et al. (1985). Assumption of constant heat fluxes in “r” future time
steps in the SFS method has a regularization essence and sometimes is called future times
regularization (Woodbury, 2003). This type of regularization introduces bias into the
estimation but significantly stabilizes the estimation procedure. Additional comments on
this type of regularization can be found in Chapter 2 of the book by Woodbury (2003).

Whole domain IHCP methods act through an iterative process to reach final
solution. These methods utilize a non-linear optimization technique as a tool for
minimizing the sum of squares of errors function (the objective function). These
techniques are generally divided into “discrete type” and “gradient-based” groups.
The latter requires the gradient of the objective function while the former does not. The
most famous of the first group is the Powell method or the evolutionary genetic
algorithm method. In the gradient-based techniques, starting from an initial arbitrary
value for the unknowns and using gradient of objective function, the progress is made
towards the minimum value of the objective function. The whole domain methods can
be regularized for example, by Tikhonov regularization approach in which an
additional term is added to the sum of squares function to penalize undesirable
variations in the estimated results (Woodbury, 2003, Chapter 2).

The iterative regularization is an alternative technique within the whole domain
IHCP types to reduce the sensitivity of inverse problem to noise errors without changing
the sum of squares errors function. The main idea in iterative regularization method is to
stop the iterative procedure sufficiently close but not very near to the final optimum
point. Then with accepting a bias error due to near optimality of the solution, it highly

HFF
18,2

218



dampens propagation of noise errors into the estimated solution. Stopping criteria for
iterative process of whole domain IHCP based on iterative regularization is determined
by what is known as the “discrepancy principle” (Ozisic and Orlande, 2000).

It should be noted that the regularization techniques manipulate the original noisy
data and use them “as are” for estimation of unknowns. Some authors have proposed to
pre-process the data obtained from the sensors before the IHCP algorithm is applied to
them. This approach consists of different digital filtering methods. Al-Khalidy (1998)
used digital filter formulation to smooth noisy sensor data in parabolic and hyperbolic
inverse heat conduction. In this method, each data value is replaced by a combination
of itself and a number of adjacent data. The method is simple for computer
programming and is based on a least square approximation. Beck et al. (1985, p. 153)
proposed a prefiltering formula much simpler than that used by Al-Khalidy in which
every data is replaced by ym ¼ ðYm21 þ 2Ym þ Ymþ1Þ=4 where m is index of time
step. Kalman (1960) introduced a filtering technique referred to as Kalman filtering.
This technique has been used by some authors to solve IHCP’s. Ji and Jang (1998)
applied Kalman filter to a one dimensional problem with errors in the measured
temperatures by comparing the calculated heat transfer with those obtained
experimentally. Tuan et al. (1996) and Tuan and Ju (2000) used Kalman filter and a
real time least squares algorithm to solve a 2D IHCP.

In this paper, an alternative approach based on wavelet transform, is introduced to
modify the sensor data before they are used by IHCP methods. Wavelets, as an
alternative approach for data analysis, have been utilized successfully for signal
separation and noise reduction (Strang and Nguyen, 1996). In this approach, discrete
wavelet transform (DWT) is used to decompose the signal acquired from each sensor in
a multi-resolution filter bank structure. Wavelets denoising algorithm is then applied
for noise reduction that modifies wavelet coefficients derived during wavelet
decomposition. The reconstruction phase is applied to the modified coefficients in order
to recover noise reduced signal. The denoised signal is then considered as an input to
the inverse algorithm. In the next section, a brief review of wavelets is presented. This
is then followed by discussion of noise reduction by wavelets. In Section 4, an inverse
problem is defined to be solved by the variable metric method (VMM) using sensor
data modified by wavelets. In Section 5, a comparison is made among results of inverse
method for three different cases, i.e. those obtained from: noisy data, iterative
regularization and the data modified by wavelets.

2. An overview of wavelets and wavelet transform
In the following, a brief review of wavelets and their primary features relevant to this
work is given. Comprehensive discussion on the subject can be found in numerous
textbooks and review papers written on wavelets. They provide excellent reference
material to study the subject (for instance, Strang and Nguyen, 1996; Burrus et al., 1997).

Wavelets are classes of functions with properties that are considered highly suitable
for analysis of wide spectrum of signals found in engineering and scientific
applications. Wavelets have been applied in communications, data compression,
pattern recognition, system modeling and control to name a few. Wavelets are used as
basis functions for signal decomposition and reconstruction described briefly as
follows.
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For a scalar function cðtÞ : R! R to be treated as a wavelet it is necessary that c(t)
satisfy the following conditions:

. to have a finite two norm, i.e.
R1
21

jcðtÞj
2
dt , 1;

. to have a finite support width (actual or effective) both in time and frequency
domain (to be band limited); and

. to satisfy the admissibility condition defined as:

Z 1

21

jĈðvÞj
2

jvj
dv , 1 ð1Þ

where, ĈðvÞ is the Fourier transform of c(t). Admissibility condition refers to behavior
of ĈðvÞ near the origin where it is required to approach zero faster than frequency
variable v. The admissibility condition implies c(t) to have a zero DC (average) value,
i.e.
R1
21

cðtÞdt ¼ 0.
Figure 1 shows examples of wavelet functions. Wavelets assume different forms;

they can be symmetric or asymmetric. Some are expressed analytically; however, most

Figure 1.
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of them are expressed numerically. Wavelets can be complex or real functions, some are
infinitely differentiable such as Mexican hat while others have regularity of finite order.

Wavelet transform of a function f ðtÞ [ L 2 is defined as follows:

Wa;b ¼

Z 1

21

f ðtÞc
t 2 b

a

� �
dt ð2Þ

where scalars a and b are referred to as scale and translation factors, respectively, and
a – 0. The function cððt 2 bÞ=aÞ is scaled and translated version of c(t) referred to as
prototype wavelet. When a, b assume continuous values, equation (2) defines
continuous wavelet transform of f(t). Now, let scaling and translation parameters a, b
assume the following discrete values:

a ¼ 22j

b ¼ k22j
; j; k [ Z

(
ð3Þ

Then translated and scaled version of c(t) can be written as:

cjkðtÞ ¼ 2j=2cð2jt 2 kÞ; j; k [ Z ð4Þ

cjk(t); j, k [ Z constitute a family of wavelet functions constructed from a prototype of
wavelet function c(t). They are utilized as basis functions for function (signal) expansion.
Signal expansion using discrete values of a and b of equation (3) is referred to as DWT.
Analysis of a given data in wavelet transform consists of three main stages:

(1) decomposition;

(2) analysis; and

(3) reconstruction (Figure 2).

Figure 2.
Main stages in signal

processing
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(Transformation)
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2.1 Decomposition stage
In decomposition stage as used in DWT, a given signal is decomposed into a set of
low- and high frequency components in a multi resolution structure using filter bank
architecture as shown in Figure 3. Decomposition of a signal into a set of hierarchically
low- and high frequency components was proposed first by Mallat (1989).
In this structure, signal decomposition is carried out by successive filtering of a
given signal using low- and high pass filters followed by down sampling by two at
each stage as depicted by block diagram in Figure 3 for a three level decomposition.
This implementation of DWT is recognized as MRFB structure. Down sampling by
two, , results in deleting signal odd samples. In this representation, h(k)’s are the
coefficients of low pass filter retaining all low frequency contents of a signal. g(k)’s are
the coefficients of high pass filters allowing to pass all high frequency components of
the signal. ai’s are referred to as “approximations” and di are called as “details”. In
signal expansion as shown in Figure 3, wavelets constitute the basis functions by
which signal components ai and di are derived. Furthermore, filter coefficients h(k) and
g(k) are directly related to a particular wavelet functions used for a given signal
decomposition. In a standard dyadic decomposition of DWT, filter coefficients remain
unchanged at all stages (scales) of decomposition. However, in multi-wavelet analysis,
different filters are used at different stages. For a complete discussion on the subject
and detailed mathematical relations of h(k), g(k), ai’s and di’s, the reader should refer to
the books by Strang and Nguyen (1996) or Burrus et al. (1997).

2.2 Analysis and signal manipulation stage
This stage of wavelet analysis of a signal includes the manipulation and coding of
wavelet coefficients such as for noise reduction, information extraction, data
compression, data transmission. Thresholding of wavelet coefficients is a commonly
used form of manipulation of coefficients for noise reduction.

2.3 Synthesis stage
Finally, synthesis stage refers to signal reconstruction where in reverse transformation
is applied on the manipulated (modified) coefficients. Manipulation of coefficients
results in a set of modified values for coefficients used during reconstruction
(synthesis) stage of the signal. For a three level decomposition of Figure 3, synthesis
stage also consists of three levels as shown in Figure 4. The up-sample adds a zero
between every second samples of input vector. The high- and low-pass filters ~g and ~h of

Figure 3.
Block diagram of signal
decomposition in standard
two channel multi
resolution filter bank
structure of DWT for three
levels
(S ¼ a3 þ d3 þ d2 þ d1)
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the reconstruction are to satisfy the following relations required for perfect
reconstruction of a signal:

hðkÞ ¼ ð21Þk ~hðkÞ ð5Þ

gðkÞ ¼ ð21Þk ~gðkÞ ð6Þ

3. Wavelet-based noise reduction
Noise reduction by wavelets as proposed by Donoho and Johnstone (1991) and Donoho
(1993) and referred to as denoising, is distinctly different from other noise reduction
approaches such as high-frequency filtering of signal components. Noise reduction by
wavelets is based on the property of wavelet transform referred to as sparsity of signal
representation in coefficient domain. Sparsity refers to clustering of coefficients into
two groups of:

(1) a few large amplitude coefficients; and

(2) a large number of small valued coefficients.

Small amplitude coefficients are attributed to noise content of the signal. Noise reduction
by wavelets deals with manipulation of wavelet coefficients in which coefficients below
a judiciously selected threshold level are replaced by zero and inverse transform of
manipulated (modified) coefficients is used to recover denoised signal; hence, noise is
cleaned from the signal. Two approaches can be considered for tresholding:

3.1 Hard thresholding
In hard thresholding, only wavelet coefficients with absolute values below or at the
threshold level are affected only, they are replaced by zero while others are kept
unchanged. Modification of coefficients w in hard thresholding can be described as
follows:

wm ¼ w if jwj $ th ð7Þ

wm ¼ 0 if jwj , th ð8Þ

3.2 Soft thresholding
In soft thresholding, coefficients above threshold level are also modified where they are
reduced by the amount of threshold:

wm ¼ signðwÞðjwj2 thÞ if jwj $ th ð9Þ

Figure 4.
Three level synthesis
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wm ¼ 0 if jwj , th ð10Þ

Donoho refers to soft threshoding as “shrinkage” where reduction in coefficient
amplitudes by soft thresholding results in a reduction of the signal amplitude thus a
“shrinkage” (Donoho and Johnstone, 1991, 1995).

For both of soft and hard thresholding, the following noise model is superimposed
on the signal:

Ŝði Þ ¼ Sði Þ þ nði Þ; i ¼ 1; . . . ;N ð11Þ

where an additive noise model is assumed. The quantity S(i ) is true signal and n(i )
indicates additive noise content of the signal. Under an orthogonal decomposition,
linearity of wavelet transformation insures an additive noise model be also valid at the
transform domain, i.e.:

W ¼ Vþ U ð12Þ

where, W is the vector of the empirical wavelet coefficients, while V and U, indicate
uncorrupted wavelet coefficients and noise content of W, respectively. Vectors W, V
and U all have a length L. Vectors V and U can be considered as a realization of the
coefficients of the true signal S(i ) and noise content n(i ), respectively. The object of
noise modeling for noise reduction is to identify a suitable probability distribution for
U and a suitable criteria for estimating noise level using empirical coefficients W. This
is treated as an statistical estimation problem that may be studied by superimposing
a’priori probability distribution on U (Bayesian approach), or by a regression type
model imposed on the noise components of the coefficients U. The knowledge of
statistical properties of the noise components are then used to determine a suitable
threshold level for denoising and signal recovery (Donoho and Johnstone, 1995).
Reconstruction of the signal is aimed to achieve a “best” estimate of the true signal in
an attempt to reconstruct a replica of the true (noise free) signal. A schematic diagram
of denoising process is shown in the Figure 5.

Donoho uses the coefficients at the highest detail level to arrive at a threshold level.
Under this approach, it is assumed that coefficients at the highest frequency details d1

of DWT, provide a good estimate of the noise content of the signal. A white noise
model is superimposed on the coefficients where wavelet coefficients are assumed to be
independently identically distributed (i.i.d.) random variables at the finest detail level.
i.i.d random variables refer to the outcome of an experiment where each outcome is
statistically independent of others and all belong to the same underlying probability
density function. Under the assumption of i.i.d. for the wavelet coefficients and
Gaussian white noise, one can show (Donoho and Johnstone, 1991, 1995) that under soft
thresholding, the actual error in estimating the true signal is within log(n) factor of the
ideal estimate under which the error is minimal (Donoho, 1995). Under this approach,

Figure 5.
Schematic diagram of
denoising process Noisy Signal

Signal
Decomposition

Wavelet

Coeff's.
Thresholding of
the coefficients

Denoising method

Modified
Coeff's. Signal

Reconstruction
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Signal
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an estimate of the standard deviation of the coefficients in d1 section is used to arrive at
a suitable threshold for coefficient thresholding at all scales. This approach is global
thresholding where the same threshold is applied on detail coefficients at all levels.
Global thresholding is the most common approach used for denoising, it is also referred
to as “universal thresholding.” It can be shown that median absolute deviation (MAD)
is a robust estimate of the standard deviation s. Donoho and Johnstone(1991, 1995) use
the following threshold for minimizing the max error in estimating the true signal:

Th ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log n

p
; s ¼

MAD

0:6745
ð13Þ

MAD is median absolute deviation of the coefficients, i.e. MAD ¼ Median (jcj)/0.6745,
where c is the vector of the coefficients at highest frequency band d1, and n is the
coefficient length. For a scale dependent thresholding, each scale is treated separately
but the same rule is applied on each scale to arrive at a threshold. Scalar 0.6745 in
equation (13) is derived from statistical relationship between standard deviation s and
MAD for Gaussian distribution.

4. Inverse heat conduction problem
In this study, we consider inverse estimation of space and time varying heat flux on the
surface of a 2D plate (Figure 6(a)). The unknown heat flux is discretized into ns space
components (Figure 6(b)). The heat conduction equation is written as:

›2T

›x 2
þ

›2T

›y 2
¼

1

a

›T

›t
ð14aÞ

›T

›y

����
ð1Þ

¼
›T

›x

����
ð2Þ

¼
›T

›x

����
ð4Þ

¼ 0 ð14bÞ

Figure 6.
(a) Inverse problem

geometry;
(b) decomposition of heat

flux into ns spatial
components
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q1(t)

(b)

q2 (t)
qns (t)

~n−1x nx~

q   (t)n~

y
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k
›T

›y

����
ð3Þ

¼ qðx; tÞ ð14cÞ

Tðx; y; t ¼ 0Þ ¼ T0 ð14dÞ

Each of the spatial components of flux (Figure 6(b)) is now assumed to be composed of
M discrete time-wise subcomponent as shown in Figure 7. All of these time and space
components are gathered in one vector ~q as:

~qn£1 ¼ q 1ðt1Þ q 1ðt2Þ . . . q 1ðtM Þ q 2ðt1Þ q2ðt2Þ . . . q 2ðtM Þ . . .
h iT

¼ q1
1 q1

2 . . . q1
M q2

1 q2
2 . . . q2

M . . .
h iT

ð15Þ

superscript T denotes the transpose sign, n ¼ ns £ M is total number of the unknowns
and ~q is the vector of unknown heat fluxes. Pulse sensitivity coefficient with respect to
each component of vector ~q is defined as:

X xk; yk; tm; q
~n
~m

� �
¼

›Tðxk; yk; tmÞ

›q~n~m
for

~m ¼ 1; 2; . . . ;M

~n ¼ 1; 2; . . . ; ns

(
ð16Þ

subscript k indicates the index number of each sensor (k ¼ 1,2 . . . ,K). Sensitivity
coefficients will be used later in the development of the inverse algorithm. Governing
equation for these coefficients are obtained by taking the derivative from heat equation
(14a)-(14d) with respect to each q~n~m:

›2X

›x 2
þ

›2X

›y 2
¼

1

a

›X

›t
ð17aÞ

›X

›y

����
ð1Þ

¼
›X

›x

����
ð2Þ

¼
›X

›x

����
ð4Þ

¼ 0 ð17bÞ

Figure 7.
Discretization of each
spatial component of heat
flux ð~n ¼ 1; 2; . . . ; nsÞ into
M time steps ð ~m ¼
1; 2; . . . ;M Þ t0 t1 tm−1 mt ~

n
mq
~
~

tM

q  (t)n~

....

~
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k
›X

›n
¼

1 ðt ~m21 , t # t ~mÞ

0 other t
;

(
for x ~n21 , x , x~n; ð~n ¼ 1; 2; . . . ; nsÞ

0 elsewhere

8>><
>>: ð17cÞ

Xðx; y; t # t ~mÞ ¼ 0 ð ~m ¼ 1; 2; . . . ;M Þ ð17dÞ

The equations (17a)-(17d) should be solved “M £ ns” times (for ~m ¼ 1; 2; . . . ;M and
~n ¼ 1; 2; . . . ; ns) to compute Xðx; y; t; q ~n

~mÞ. In order to obtain the unknowns vector ~q, a
sum of square error function, which must be minimized, is now defined as:

f ¼
XK
k¼1

XM
m¼1

½Y ðxk; yk; tmÞ2 Tðxk; yk; tm; ~qÞ�
2 ð18Þ

where, K is total number of sensors, Y is the measured temperature at sensor location
of (xk, yK), and T is the computed temperature utilizing the direct heat conduction
model (equation (14a)-(14d)) with an assumed or given vector for ~q. In fact, f is the
objective function of the problem and is an implicit function of its variable ~q. The design
vector ~q should be found in a manner that minimizes the objective function f. The
problem of estimating the vector ~q which minimizes f can be considered as a non-linear
programming (optimization) problem.

The conjugate gradient method (CGM) and the VMM both belong to unconstrained
optimization techniques. A survey of existing works in whole domain IHCP reveals that
CGM has been used so far as the tool for minimizing of the object function f in inverse
problems. The textbook by Ozisic and Orlande (2000) and the book by Alifanov (1994)
give a comprehensive discussion of CGM accompanied by IHCP. Moreover, many
technical papers have been published on the subject of CGM in inverse problems. For
example, Huang and Chen (2000), Chen et al. (2001), Linhua et al. (1999), Prud’homme and
Nguyen (2001), Louahlia-Gualous et al. (2003), Singh and Tanaka (2001) and Machado
and Orlande (1997), all have used CGM in various inverse heat transfer problems.
However, VMM is more powerful than CGM in non-linear unconstrained programming
(Rao, 1995). The VMM is very stable and continues to progress towards the minimum
even when dealing with highly distorted and eccentric functions. The authors Kowsary
et al. (2006) and Pourshaghaghy et al. (2007) have recently applied the VMM successfully
for solving IHCP. The VMM is also utilized in this paper to minimize the function of
squares errors. The detailed iterative procedure of VMM for finding vector of unknowns
~q can be found in aforementioned references.

In whole domain type of IHCP, some oscillations may appear in the estimated
solutions near the final times such that the estimated heat flux at a few time steps near
final times is discarded (Beck et al., 1985; Huang and Chen, 2000). In what follows, an
approach is given to obtain more accurate solution near final times and avoid such
instabilities. In this approach, a greater final time with respect to the desired domain is
considered but the unknowns are estimated only inside the small time domain (desired
time) using sensor data in the entire time domain. That is, the total number of time
steps M is divided into M1 þ M2 time steps where additional time steps M2 is much
less than M1 and are taken to damp the instabilities. Then, the estimation of heat flux is
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performed only for M1 time steps using M1 þ M2 sensor data. The value of M2 should
be chosen such that the temperature at the sensor locations are affected by the final
heat flux component. An approximate value can be inferred from the “penetration
depth” concept. In each iteration, the value of unknowns inside M2 time domain (used
in equation (14a)-(14d) for calculating T) is considered to be equal to their value at the
end of the main M1 time domain and there is no need to any information about real end
fluxes. The number of search variables (components of ~q) is n ¼ M1 £ nS. The
sensitivity coefficient equation (equation (17a)-(17d)) should be solved in total domain
of M ¼ M1 þ M2. The objective function and its gradients are also calculated in total
time domain M; i.e. M in equation (18) is equal to M1 þ M2.

In the case of non-noisy data, either of the following criteria can be used to terminate
the iterative process of VMM:

j f j # 1 ð19Þ

k
!

7f k # 1 ð20Þ

In this work, k
!

7fk # 1 is used as the stopping criteria, where 1 is an arbitrary small
number. In the case of noisy data, however, 1 should be chosen based on iterative
regularization criteria (discrepancy principle) in order to reduce sensitivity of the
solution to the random noise errors. The main idea in iterative regularization is to stop
the iterative procedure close to but not at the optimum point. This will, then, tend to
regularize the solution and to damp the effects of random noises in data. Stopping
criteria in iterative regularization for a constant value of noise amplitude is given by
Ozisic and Orlande (2000):

j f j # K £M £ A 2 ð21Þ

where, K and A are total number of sensors and noise amplitude, respectively, and M is
the total number of time steps. If M is divided into M1 and M2 as described previously,
M1 should be used in equation (21) instead of M.

5. Results and discussion
Let’s consider the upper surface of slab in Figures 6(b) being exposed to five unknown
heat flux space components (ns ¼ 5) each one with time varying forming a vector as
described in Section 4. The slab is made of aluminum (thermal diffusivity of
9.71 £ 1025 m/s) with the dimensions of 10 £ 1 cm having an initial temperature of
300 K. The thermal properties are assumed to be temperature independent.
Temperature dependent properties will have no bearing on the idea proposed in this
paper. The direct heat conduction calculations implemented in the inverse scheme were
performed using an ADI finite difference method (Anderson et al., 1984). Five space
components of heat flux are estimated in a total time equal to 28 s. An additional sensor
data for 2 s were used after final time in order to stabilize near end solutions as
described in previous section. To simulate sensor temperatures, the top surface of the
slab was numerically exposed to a known five component convective heat transfer
coefficient and known fluid temperature. The fluid temperature is considered to be
500 K. The upper surface of the plate was divided into five equal-sized sections. In
accordance with thermal boundary layer growth, the convective coefficients in each
section were chosen to be decreasing from left to right of the plate as: 1,000, 800, 600,
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400, and 200 W/m 2 K. Five sensors were assumed to be located at (1, 0.8), (3, 0.8), (5, 0.8),
(7, 0.8) and (9, 0.8) cm with respect to the coordinate system shown in Figure 6. Then,
temperature values were obtained using the direct heat conduction calculations and
their values at sensor locations were saved and used as sensor data. Time step for the
inverse procedure and numerical ADI calculations were different from each other.
Time step in all direct calculations was 0.01 s while the calculated temperatures at
sensor locations were saved every 0.1 s in order to be used in inverse procedure. This
value of time step (10 samples per second) precludes random error correlation in most
real situations.

Figure 8 shows five estimated components of heat flux using VMM and non-noisy
sensor data. Stopping criteria was chosen as k7f k # 2 £ 1023, and an initial value
equal to unity was used for all unknowns. Comparison of the real and the estimated
fluxes in this figure indicates the accuracy of the proposed inverse method. The bias
seen in the estimated heat flux near the end of time domain is common in all whole
domain IHCP solutions, although using the M2 additional data (as described
previously) has reduced this undesired effects greatly.

At the next step, noise was added to the sensor data using the following
equation:

T̂ ¼ T þ vA ð22Þ

in which T̂ is noisy temperature and T is non-noisy temperature, v is a normally
distributed random number within22.576 to 2.576 for a 99 percent confidence bound.A
is the standard deviation of the measurements which was set equal to 1.2 K (i.e. 1 percent
of maximum temperature rise). A plot of the simulated temperatures at the sensor
locations is shown in Figure 9. Heat fluxes estimated from these noisy data with
applying the iterative regularization method are shown in Figure 10.

In the last stage, the same noisy data used as above, were denoised by wavelet
denoising algorithm described earlier. In this paper, data simulation and computations
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of direct and inverse heat conduction were carried out using FORTRAN; while for
wavelets calculations and denoising, the wave-menu of MATLAB toolbox was used.
Computational load of denoising by MATLAB is not a significant issue. MATLAB uses
seven different criteria for thresholding where they can be implemented in either soft or
hard thresholding. In our data analysis, we used a conservative thresholding criteria
referred to as “penalize high” in MATLAB. Based on the results of several trials and
observing the “edge effects” it was found that hard thresholding often gave better results
as compared with those of soft thresholding. The edge effect refers to oscillations at the
initial or final regions of the reconstructed signal. These oscillations in hard
thresholding were found to be less than those of soft thresholding. We used coif-2 for

Figure 10.
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analyzing wavelet in a multi resolution structure with eight levels for decomposition. It
was found that factors contributing to an improved noise separation include:

. wavelets having short support length;

. high-decomposition levels; and

. the length of the original signal to be of large value.

Figure 11 shows decomposition of first sensor data into eight levels in standard
multi-resolution pyramid. In this figure, “S” is original noisy signal of 300 sample
length with noise amplitude of 1.2 K. As can be shown in this figure, a large percentage
of noise content of the signal resides in d1 and d2. This is mainly due to the fact that
the frequency of noise components of the signal lies often in high-frequency band as
compared with frequency of the signal. It should also be noted that the coefficients at d1

are of low amplitudes as compared with those of the other levels, and as such these
coefficients belong mostly to noise content of the signal. After analyzing the signal,
denoising is performed on the signal components as shown in Figure 12. Threshold
level for d1 is shown by dotted line and as seen, almost all of signal components in d1 as
well as d2 and d4 are set to zero.

Figure 11.
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In Figure 12, the midsection indicates original signal (top) and the coefficient of original
and denoised signal (mid and lower) at different levels. Coefficient amplitude is
indicated by the brightness of the gray-scale, where black color corresponds to zero
coefficient value.

Noisy and final denoised signals of five sensors are compared as shown in Figure 13.
In this figure, the difference between noisy and non-noise original data (Tnoisy 2 T) is
compared with the difference of denoised and original data (Tdenoised 2 T). The “edge
effect” as a shortcoming of wavelet transform is observed at the initial and end of each
signal. The more length of the original signal not only contributes to the less edge
effects but also the more accurate thresholding could be achieved.

Figure 14 shows heat fluxes as estimated by denoised data but without iterative
regularization. A comparison between Figures 8-14 show that applying
wavelet algorithm for noise reduction of data has appreciable effects on IHCP results.
A root mean square error percentage, eRMS, is defined to compute the difference between
estimated and true values of components of vector ~q as:

eRMS; ~q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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CA £ 100 ð23Þ

Table I gives the errors of IHCP solutions related to Figures 8-14. This table
confirms once again the capability of proposed denoising algorithm noting that the

Figure 12.
Illustration of computed
thresholds in denoising
stage

0.01

0.01

0.5

−0.01

−0.01

−0.5

−5

−5

10

–10

0

10

–10

0

5

5

0
400

380

360

340

320

300

8
7
6
5
4
3
2
1

8

7
6
5
4
3
2
1

0

0

0

−5

0

0

50 100 150 200 250 300

50 100 150 200 250 300

50 100 150 200 250 300

Thresholded coefficients

50 100 150 200 250 300
Original coefficients

Original details coefficients Original and de-noised signals

L
ev

el
 n

um
be

r
L

ev
el

 n
um

be
r

5

d8

d7

d6

d5

d4

d3

d2

d1

HFF
18,2

232



Figure 13.
Comparison between the
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errors when using denoising is lower, as much as 25.6 (percent) than those of
iterative regularization.

6. Conclusion
Potential use of wavelets for noise reduction was successfully tested to improve IHCP
results. The VMM was utilized as minimization tool in whole domain inverse problem
instead of the CGM. Denoising by wavelets provides a considerable advantage due to
its low-computational load during its implementation using wavemenu of MATLAB.
Although the iterative regularization is also considered a simple method for decreasing
sensitivity to the noise errors in whole domain IHCP, the method presented in this work
not only yields accurate results in whole domain procedure, but also it will be worth to
be applied in sequential methods of IHCP where iterative regularization is not
applicable.
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